Priestley-type dualities for partially ordered structures

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and convergence results for monotone nonexpansive type mappings in‎ ‎partially ordered hyperbolic metric spaces

‎We present some existence and convergence results for a general class of nonexpansive mappings in partially ordered hyperbolic metric spaces‎. ‎We also give some examples to show the generality of the mappings considered herein.

متن کامل

Bhaskar-Lakshmikantham type results for monotone mappings in partially ordered metric spaces

In this paper, coupled xed point results of Bhaskar-Lakshmikantham type [T. Gnana Bhaskar, V.Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, NonlinearAnalysis 65 (2006) 1379-1393] are extend, generalized, unify and improved by using monotonemappings instead mappings with mixed monotone property. Also, an example is given to supportthese improvements.

متن کامل

Countable homogeneous and partially homogeneous ordered structures

I survey classification results for countable homogeneous or ‘partially homogeneous’ ordered structures. This includes some account of Schmerl’s classification of the countable homogeneous partial orders, outlining an extension of this to the coloured case, and also treating results on linear orders, and their generalizations, trees and cycle-free partial orders. 2000 Mathematics Subject Classi...

متن کامل

Tripled partially ordered sets

In this paper, we introduce tripled partially ordered sets and monotone functions on tripled partiallyordered sets. Some basic properties on these new dened sets are studied and some examples forclarifying are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 2016

ISSN: 0168-0072

DOI: 10.1016/j.apal.2016.04.008